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Abstract: Our research is focused on defining robust adaptive control architectures that 
can be completely characterized with their performance bounds and robustness/stability 
margins. Research in this direction over the past several years has led to a powerful set of 
tools, known as L1 adaptive control theory. This new paradigm for design of adaptive 
control systems embeds the robustness specification explicitly into the control problem 
formulation (control objective) and allows for decoupling adaptation from robustness, 
limiting the speed of adaptation only by available hardware (CPU). The performance 
bounds can be predicted a priori based on the conservative bounds of uncertainty, and the 
time-delay margin of it can be tuned systematically.  The results of this research have 
been leveraged into different programs across the country, including WP AFRL’s 
“Certification of Advanced Flight Critical Systems: Challenge Problem Integration” and 
NASA’s “Integrated Resilient Aircraft Control”. We also revealed some similarities with 
the disturbance observer (DOB) controllers and identified the main features in the 
difference between them. The key feature of this difference is that the estimation loop of 
the L1 adaptive architectures reconstructs the inverse map of the DOB architecture by fast 
estimation and with that avoids the number of challenges of DOB related to the plant 
inversion. Insights from this comparison were used towards modification of DOB with 
improved transient performance. 

Technical Transitions: We had the opportunity to transition our theoretical work to 
various applications, including both military and commercial sections.  On the military 
side, our collaboration with NPS led to a flight test of two UAVs (with complementary 
sensing capabilities) in a time-critical coordinated road search maneuver in TNT 
exercises in Camp Roberts, CA1. On the commercial side, the implementation of L1 

adaptive controller on NASA’s subscale generic transport model (GTM) aircraft 
demonstrated repeatable and predictable (i.e. verifiable) results in multiple high-angle 
of-attack acquisition tasks by a pilot2. The flights included variations in speed up to post-
stall flight regimes, and the performance was achieved with a single design of the control 
parameters in L1 adaptive controller, without resorting to gain-scheduling, control 
reconfiguration or persistency of excitation. These flight tests clearly validated the 
uniform performance bounds of L1 adaptive controller from one flight test to another. 

                                                 

1 Leveraged by ONR and USSOCOM 
2 Leveraged by NASA’s IRAC Program 



Main accomplishments: We developed the L1 adaptive control theory, summarized in 
[1], and transitioned it to various applications, by leveraging additional sources of 
funding for that. They key idea of this theory is to decouple the identification loop from 
the feedback control by means of an architecture so that fast estimation rates can be used 
for improved performance without sacrificing robustness. The theory has been developed 
for state feedback and output feedback controllers, for linear and nonlinear systems, in 
the presence of unmodeled dynamics and time-varying nonlinearities, without restricting 
the rate of their variation. The architectures of this theory enable to reduce the 
performance limitations to the hardware limitations. The main challenge is to design the 
low-pass filter for optimizing the tradeoff between performance and robustness.We 
explored various stochastic optimization methods for design of optimal filters for the L1 

adaptive controllers [2]. These results aim at developing a methodology, which can 
benefit from the stochastic optimization methods, like randomized algorithms, for the 
purpose of quickly identifying a possible local domain of the search parameters (entries 
of filter realization), within which deterministic gradient optimization methods with local 
performance guarantees can be employed effectively. We also explored the robustness 
margin of L1 adaptive controllers in gap metric [3, 4]. By appropriately extending the 
classical notion of stability from [5] to accommodate biased-gain stability, our results 
show that the robustness margin of L1 adaptive controllers is guaranteed to be bounded 
away from zero, and can be suitably tuned via the design of the underlying filter of the L1 

adaptive controller. Moreover, the bias that quantifies the performance of the stability 
can be arbitrarily reduced by increasing the adaptation rate. 

In parallel, we also initiated a new direction of research in our lab towards identifying 
Bode-like performance limitations for continuous-time stochastic switching systems. Our 
preliminary results in [6] explored a non-trivial extension of Bode-like formula from [7] 
to continuous-time systems. The essence of the non-trivial extension is in the fact that 
Kolmogorov’s entropy rate inequality, which is used for derivation of the information 
conservation laws in discrete-time setting in [7], cannot be effectively employed in 
continuous-time setting due to the undesirable properties of the underlying limiting 
relationship. Instead one needs to resort to mutual information rate for derivation of 
similar conservation laws in continuous-time setting. The latter are elaborated towards 
obtaining a Bode-like integral for continuous-time stochastic processes. 

We have also extended the theory to networked control systems to set the stage for the 
renewal proposal, [8-10]. 

Among the many applications and transitions considered over the last several years, the 
following are of special relevance to Air Force:  

 

 Military section: Augmentation of off-the-shelf autopilots to ensure accurate path 
following for two UAVs executing time-critical missions within spatial constraints in 
the presence of time-varying communication network topology with complementary 
sensing capabilities [11]. Figure 1 illustrates those results. 



 
Figure 1. Time-critical coordinated path following in a coordinated road search maneuver. In this 
application, after a user designates a road where a potential foe is on the move, two 
heterogeneous UAVs with complementary sensors (high resolution camera and pan-tilt video 
camera) are dispatched to search the road and to track the target once it has been identified by the 
user. Accurate coordination with the help of controller is especially important to maximize the 
intersection of the field of view of each sensor and guarantee successful continuous coordinated 
coverage. 

 Commercial section: Flight tests of a subscale commercial jet (NASA’s AirSTAR 
flight test vehicle) in pre and post-stall flight regimes with a single design of L1 
controller without any gain-scheduling [12]. Figure 2 highlights those results. 

 
Figure 2. Flight test results of NASA’s AirSTAR test vehicle: 18 degrees angle-of-attack 
acquisition tasks executed by the pilot. L1 adaptive controller produces almost identical results 
(i.e. predictable, repeatable, and verifiable per the theory) in two consecutive maneuvers, with 
the airspeed dropping almost up to 40 knots (post-stall regime). In stick-to-surface control, the 
vehicle experiences pitch break at 15 degrees angle-of-attack and an aggressive departure in roll. 
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Transitions 

 The theory has been implemented on NASA’s AirSTAR GTM dynamically scaled jet 
powered piloted aircraft and flight tested for post-stall flight regimes. POC: I. Gregory, 
NASA LaRC, Hampton, VA 23681, Ph: 757-864-4075, E-mail: 
i.m.gregory@larc.nasa.gov.  

 The theory has been used to augment an existing autopilot (Piccolo) for accurate path 
following in the problem of time-critical cooperation of UAVs with spatial constraints in 
the presence of time-varying communication network topology. POC: Isaac Kaminer, 
MAE, NPS, Monterey, CA 93943, Phone: 831-656-3459 (further transition to 
USSOCOM in TNT exercises). 
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Coupling” (with C. Cao and E. Xargay) 
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